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Abstract—Exploration is a important component of any rein-
forcement learning algorithm. Consequently, recent works have
developed reward-free methods of exploration that seek to obtain
maximum coverage of an environment which is then utilized for a
downstream task. However, we show that reward-free exploration
is hard in complex environments. In addition, when there is
knowledge of the downstream tasks, there is no straightforward
method to prioritize exploration to the desired region while still
being able to eventually reach regions outside of the desire one(s).
We propose to modify existing entropy maximizing exploration
algorithms by adding a varying distance metric before estimating
entropy. Specifically, by dynamically stretching and compressing
the representation space we are able to direct the exploration of
entropy maximizing agents. We show that, in a fewer number
of steps, our method yields better coverage of desired regions
compared to reward-free method while being able to achieve full
coverage given enough time.

I. INTRODUCTION

There has been multiple works such as [13] [8] [6] that aim
to develop unsupervised exploration methods. As the name
suggests, these methods do not use the environments rewards
and instead create their own reward. Typically these reward
functions measure the novelty of a state. Some of these meth-
ods are entropy maximization and model disagreement. While
they successfully are able to explore most of an environment
given enough time, they can not utilize any prior to guide their
exploration to make the exploration more time efficient.

In our work, we formulate a problem where we have a
region of interest that we want the agent to explore. One
can treat the region of interest as a Gaussian mixture model
(GMM). We represent the region of interest through a finite
set of points, which can be treated as the centers of the
GMM. Therefore, we ideally want an exploratory agent that
is able to direct its exploration towards the region(s) of
interest. We achieve this by adding changing the distance
metric of the aforementioned entropy maximization methods.
By dynamically stretching and compressing the space, we are
able to directly control where an entropy maximizing agent
explores.

We work on various maze environments and plot the agent’s
visitation distribution to convey that our method is able to
explore the region of interest initially while still being able to
explore outside of the region given enough time. In addition,
through the setup proposed in [14] we train an offline rein-
forcement learning agent to reach a goal location in the desired
region, and show that our method is more time efficient at
generating exploratory data that covers the region of interest.
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Fig. 1. Given the maze environment we prioritize exploration by placing 3
guide points, which are the red points, so that the agent explores the top right
branch first. By showing 3 snapshots of the agent’s visitation we see that the
agent is still able to achieve uniform coverage of the environment

II. RELATED WORK

The simplest form of exploration is in a tabular setting
where one can utilize count based methods [10] and even ex-
tend it to non-tabular methods [11]. In addition there have been
many method that perform intrinsic exploration in continuous
settings. One class of them rely on model disagreement such
as ICM [8]. By leveraging the error of a forward model, the
novelty of a state can be determined. Other works such as [1]
utilize two networks that map the agent’s state to a feature
space. One of the networks is frozen and the other network is
trained to match the frozen network’s output, which is known
as distillation. Therefore there will be higher error in novel
states, which is then utilized as an intrinsic reward.

Other works [13] [6] seek to maximize the entropy over the
state space and consequently rely on non-parametric methods
to estimate entropy which utilizes nearest neighbors infor-
mation for each state. These method also work on complex
domains such as images, where the nearest neighbors are
calculated on a feature space. Therefore, it requires that there



is a good encoder and the aforementioned works learn the
encoder through self supervised techniques like prototypical
clustering or contrastive learning.

In addition to guided exploration there are multiple alter-
native methods. One possibility is explicit demonstrations of
performing a task. Works such as [12] utilize human data to
initialize an agent through imitation learning. Naturally, this
will guide exploration to better states when improving the
agent through reinforcement learning.

We find previous works that do not require demonstrations
and instead explore other forms of data to distill a prior to
guide exploration. For example, language is one form, which
allows the agents to reason about another mode of data as
done in [4] in addition to [7].

III. APPROACH

Methods like [6] and [13] seek to maximize the entropy
of the agent’s explored states. They achieve this via a
non-parametric estimation of the states. Specially they utilize
[9] which calculates the entropy over a set of n points, {zi},
zi ∈ Rq .
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[6] finds that there is better stability when averaging over
the k nearest neighbors which yields the following estimator.
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We propose to include a metric on the state or representation
space which the nearest neighbor distances are calculated on.
A metric is a function that calculates the distance between
points. Specially we establish a metric scale factor d(z), to
scale the original nearest neighbor distance ||zi−z
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modifies the entropy estimator to the following.
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where we set

d(zi) = exp
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)
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with Gz being the set of guide points {gi}
ng

1 . Guide points
capture the region of interest where we want the agent to
prioritize exploration. These set of points don’t have to be
in Rq and can reside in a subspace. topr is the average of

Fig. 2. We illustrate two possible scenarios, where the circles represents
states, and the diamond is a guide point. In the left image, the yellow circle
is present in the replay buffer and the green circles are the states where
the agent currently explored. Based on our reward function the green states
closet to the guide point will obtain the highest reward because all they are
all equidistant from the present yellow state. However, on the right image if
the agent currently explored the green state and blue state, then the blue state
will obtain the higher reward. This shows how we prioritize guiding the agent
towards the guide point as well as expanding the explored coverage around
the guide point.

the top kr rewards from a replay buffer sample calculated
using the original entropy estimator without scaling distances.
topdist is the distance to the state in the sample from the replay
buffer that is farthest from a guide point. In addition we have
hyperparameters α and d which allow us to control how much
density we want in the regions of interest. They can be treated
as the centers of a Gaussian mixture model. Below we show
the final form of our reward function.
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Intuitively our method initially prioritizes reaching the guide

points because calculating distances near guide points yeild
larger reward values than those farther away. Gz is nearest
guide point to z. However, once the agent explores the desired
regions with enough density, our reward function prioritizes
exploring the border of the coverage as shown in Figure 2.

We first perform n steps of greedy exploration where we set
our reward function to be r(s) = er −β ∗ ||fθ(s)−Gz||. This
allows us to obtain a coverage to some of the guide points from
which we then switch our reward function to equation 7 which
then seeks to progressively keep expanding the coverage.

IV. EXPERIMENTAL EVALUATION

We demonstrate that our method is able to successfully
explore the desired regions first while still being able to
obtain full coverage of the environment given enough time. We
analyze our method against two baselines, being unsupervised
exploration through ICM APT [5] as well as setting the reward
function to er−||fθ(s)−Gz||, where er is the entropy reward
calculated from ICM APT. The later of the two methods
does prioritize exploration near the guide points. However,
as shown in Figure 3, after a certain radius away from the
guide point, the distance term, ||fθ(s) − Gz|| will be larger



than the entropy reward term, er. This causes the agent to
not explore significantly past that radius, and thus exploration
is confined to a fixed region. We test the method on two
environments of significantly different sizes. On the smaller
environment which is the bottom row, we can see the method
obtains reasonable coverage while being able to prioritize the
right room. However, the larger environment conveys that the
method isn’t able to obtain coverage of the entire environment.
We then evaluate our method on both environments as shown
in Figure 4. Using the same hyper parameters between both
environments we show that our method is able to obtain
coverage of the region of interest first while still being able
to cover the entire environment.

In addition, we utilize offline reinforcement learning to
evaluate whether our method is able to obtain sufficient
coverage for an agent to learn to reach a goal in the desired
region. This setup is taken from [14]. We run our method as
well as unsupervised ICM APT from [5]. We tested it on an
environment that has distinct rooms as shown in Figure 1. As
shown in Figure 5 we show that training an agent using td3 [3]
yields better performance using the exploratory data collected
by our method. The performance difference is most significant
when using the exploratory data from an earlier time step. This
is because our method prioritizes the region of interest whereas
an unsupervised exploration method doesn’t. Therefore, on
average it will take longer for an unsupervised exploratory
agent to explore a specific region. Eventually the unsupervised
agent is able to explore the region of interest, however as the
environment becomes larger it takes exponentially more time
for an unsupervised method to obtain coverage of a desired
region.

Fig. 3. We demonstrate why a simple reward function entropyr−γ∗NNdist

is not sufficient to explore the entire environment, where entropyr is the
reward from the entropy calculation. We show the visitation distribution at 3
timesteps, being 150k, 500k, 1M.

V. DISCUSSION

We convey that guiding exploration is useful when there
is access to a prior of the downstream tasks. We utilize
guide points which need to be manually created. This is a
potentially a limitation of this work because in more complex
environments and agents it may be difficult to create a guide
point in the right space. However, one can treat guide points as
more than points and instead representations. Works like [2]

Fig. 4. We illustrate the visitation distribution of method for the given guide
points across different time steps being 150k, 500k, 1M. We see that eventually
our method is able to cover the entire environment.

ours icm_apt

Fig. 5. We evaluate our method and the baseline on the shown goal location
across different time steps of the exploratory data collection. At fewer number
of time steps we show that our method is more successful.

compress trajectories into representations and perform optimal
transport to calculate distances. Therefore, one can substitute
representations for our guide points and substitute a new
distance metric instead of a euclidean metric. In addition,
we see that having representations evolve over an agent’s
lifetime are more adaptable. Works such as [13], illustrate how
combining exploration with representation learning yield more
efficient exploration. Consequently, an interesting direction
would be to treat the guide points as a set of observations and
as the representations evolve over time so will the distances
thus allowing the agent dynamically change which regions of
the environment it prioritizes for exploration.
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